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Outline: HIV Model Calibration and Prediction

Goal: Employ patient data to calibrate a model of in-host HIV infection and
use it to predict long-term patient behavior.

1. HIV infection and structured treatment interruptions (STIs)

2. Overview of available clinical data

3. Nonlinear ordinary differential equation model for in-host viral and

immune system dynamics

4. Inverse problem for model calibration with censored data

5. Results with calibrated model

6. Conclusions

B.M. Adams, H.T. Banks, M. Davidian, and E.S. Rosenberg, Estimation and Prediction with HIV Treatment

Interruption Data, Bulletin of Mathematical Biology, accepted pending minor revisions.
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Worldwide Adult HIV Prevalence
38 million infected as of 2003 (WHO/UNAIDS)

3



HIV and Treatment

• Human Immunodeficiency Virus is a retrovirus.

• Infects CD4 helper T-cells of the immune system to reproduce

• Typical HIV treatment (combination therapy) suppresses viral

infection and production .
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HIV and Treatment

• Human Immunodeficiency Virus is a retrovirus.

• Infects CD4 helper T-cells of the immune system to reproduce

• Typical HIV treatment (combination therapy) suppresses viral

infection and production .

Structured Treatment Interruptions (STIs)

• Drug holidays – alternative to continuous therapy

• Break from serious side effects, reduced drug treatment cost

• Could boost immune system , cause self-vaccination (Berlin patient)

• May effect reversion from drug resistant to wild type virus
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Data from Clinical Acute Infection Study

• Eric Rosenberg, M.D., Mass. General Hospital, Boston, tracks over 120

patients in acute and early infection phases

• Early phases believed important for establishing immune responses

• Measures T-cell counts, viral load, immune responses

• Some on STI: control drug via fixed schedule or feedback

treatment protocol

(control input ǫ(t):

drug efficacy)

.
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Can we use model to predict clinical data and differentiate

between various patient outcomes?
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Interruption Patterns

• 45 patients

• 10 or more of each CD4

T-cell, viral load mea-

surements in first half of

logitudinal data

• 16 spend 30–70% time

off treatment
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Typical Study Data
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• Red bar denotes off treatment periods – note viral rebound

• Viral load measurements have limit of detection: 400 or 50 copies/ml

(censoring)
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Overview: Modeling and Control for HIV

GOAL: Use HIV infection models to help Rosenberg understand patient data

(e.g, what differentiates rapid progressors from long-term non-progressors)

and suggest better treatment schemes.

Survey Paper: JCAM special issue on Mathematics Applied to Immunology (2005)

• Surveyed, selected, and integrated models, performed calibration

• Advised control theory collaborators on using model to determine optimal

treatment schedules (MBE 1 (2004), 223–241)

• Chose patient data to fit based on analysis with POD (SVD, PCA)

• Developed and applied mathematical and statistical invers e problem

methods to fit model to patient data , including nonparametric techniques to

determine distribution of model parameters across population.

(Ph.D. dissertation)

• Ongoing NCSU efforts to develop more detailed immune system models.
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Outline: HIV Model Calibration and Prediction

1. HIV infection and structured treatment interruptions (STIs)

2. Overview of available clinical data

3. Nonlinear ordinary differential equation model for in-host viral an d

immune system dynamics

4. Inverse problem for model calibration with censored data

5. Results with calibrated model

6. Conclusions
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HIV Infection Dynamics Model

• Based on Callaway–Perelson (2001), Bonhoeffer, et. al. (2000) models

• Two co-circulating target cell populations T1, T2
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HIV Infection Dynamics Model

Uninfected type 1: Ṫ1 = λ1 − d1T1 − (1 − ǫ1)k1VIT1

Uninfected type 2: Ṫ2 = λ2 − d2T2 − (1 − fǫ1)k2VIT2

Infected type 1: Ṫ∗
1

= (1 − ǫ1)k1VIT1 − δT∗
1
− m1ET∗

1

Infected type 2: Ṫ∗
2

= (1 − fǫ1)k2VIT2 − δT∗
2
− m2ET∗

2

Infectious virus: V̇I = (1 − ǫ2)NT δ(T∗
1

+ T∗
2
) − cVI

− [(1 − ǫ1)ρ1k1T1 + (1 − fǫ1)ρ2k2T2]VI

Non-infect. virus: V̇NI = ǫ2NT δ(T∗
1

+ T∗
2
) − cVNI

Immune effectors: Ė = λE +
bE(T∗

1
+T

∗

2
)

(T∗

1
+T∗

2
)+Kb

E −
dE(T∗

1
+T

∗

2
)

(T∗

1
+T∗

2
)+Kd

E − δEE

• q will denote one or more model parameters (of interest), e.g., q = [k1, c, NT ]

and z the observed states z = [z1, z2] = log10[T1 + T∗
1
,VI + VNI].
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Helpful Model Features

• Incorporates single or multi-drug therapy with realistic sensitivity

• Predicts low, non-zero viral load equilibrium under therapy

(hence rebound)

• Multiple off-treatment stable steady states; can determine drug

control to drive between states via treatment interruptions

EQ1 EQ2 EQ3

T1 (cells/ml) 1000000 163573 967839

T2 (cells/ml) 3198 5 621

T∗

1
(cells/ml) 0 11945 76

T∗

2
(cells/ml) 0 46 6

V (copies/ml) 0 63919 415

E (cells/ml) 10 24 353108

local stability unstable stable stable

uninfected viral dominant immune dominant
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Single Patient Inverse Problems

• Data: for each patient j = 1 . . . NP , we have log-scaled data pairs

(tij,yij) at times tij, i = 1, . . . , Nj.

• Math. Model: (log-scaled) components of ODE solution: z(tij; q)

• Stat. Model Assume error model for observations, e.g.,

yij
s = zs(t

ij; q0) + eij where eij ∼ N (0, σ2).

(for assay data: variance typically proportional to square of load)
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Single Patient Inverse Problems

• Data: for each patient j = 1 . . . NP , we have log-scaled data pairs

(tij,yij) at times tij, i = 1, . . . , Nj.

• Math. Model: (log-scaled) components of ODE solution: z(tij; q)

• Stat. Model Assume error model for observations, e.g.,

yij
s = zs(t

ij; q0) + eij where eij ∼ N (0, σ2).

(for assay data: variance typically proportional to square of load)

Fit ODE model to each patient j yielding parameters qj :

q∗j = arg min
q∈Q

J(q) =
1

Nj

Nj
∑

i=1

∣

∣z(tij; q) − y
ij
∣

∣

2

(standard nonlinear least squares), then perform statistical analysis.
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Problem with Standard NLSQ Approach

q∗j = arg min
q∈Q

J(q) =
1

Nj

Nj
∑

i=1

∣

∣z(tij ; q) − yij
∣

∣

2

• Recall viral load measurements have lower limit of quantification :

L = 400 or 50 copies/ml

• Need to quantify uncertainty about censored data, leveraging

knowledge that they are below detection limit (in [0, L])
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Censored Data Approach

IDEA: When data are censored, make a probability statement about their

values.

• Still assume viral load V data y
ij
2 arise from model z

ij
2 (q), but when

below the limit of detection, assume log data follow truncated normal

distribution.

• χi will indicate censored measurements (χi
(yi<L) = 0) and

uncensored (χi
(yi≥L) = 1).
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Individual Patient Estimates: Censored Data Method

1. Perform initial least squares fit to data to obtain q∗ and an estimate of

variance σ̂2.

2. Replace censored data points using best knowledge of distribution

y
ij
2 ∼ N (zij(q∗), σ̂2):

ỹ
ij
2 = χiy

ij
2 + (1 − χi)E[yij

2 |y
ij
2 < L]

3. Minimize least squares criterion using modified data

q∗ = arg min
q∈Q

J(q) =
1

Nj

Nj
∑

i=1

∣

∣z(tij; q) − ỹ
ij
∣

∣

2

to update q∗, σ̂2. Return to 2., iterate to convergence.

Approach based on EM algorithm for maximum likelihood. Solve nonlinear least

squares problem with DIRECT (D.E. Finkel) and lsqnonlin (Matlab).
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Model Calibration and Prediction

GOAL: Evaluate model’s predictive ability by fitting to half of each patient’s

longitudinal data, then attempt to predict full time series.

1. Emulate “book” parameters by estimating all model parameters and initial

conditions for each of 45 patients and averaging.

2. Fix less sensitive model parameters at book values

3. Estimate most sensitive 8 parameters and 3 initial conditions for each patient

using:

(a) half of the available longitudinal data

(b) all of the available longitudinal data

4. Simulate model with each parameter set (a) and (b); compare to each other

and to full data series.
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Model Parameters estimated vs. fixed at average

Uninfected type 1 ( T
0

1
): Ṫ1 = λ1 − d1T1 − (1 − ǫ1)k1VIT1

Uninfected type 2 ( T
0

2
): Ṫ2 = λ2 − d2T2 − (1 − fǫ1)k2VIT2

Infected type 1 ( T
∗0

1
): Ṫ

∗

1
= (1 − ǫ1)k1VIT1 − δT∗

1
− m1ET

∗

1

Infected type 2 ( T
∗0

2
): Ṫ

∗

2
= (1 − fǫ1)k2VIT2 − δT∗

2
− m2ET

∗

2

Infectious virus ( V
0

I
): V̇I = (1 − ǫ2)NTδ(T∗

1
+ T

∗

2
) − cVI

− [(1 − ǫ1)ρ1k1T1 + (1 − fǫ1)ρ2k2T2]VI

Non-infect. virus ( V
0

NI
): V̇NI = ǫ2NTδ(T∗

1
+ T

∗

2
) − cVNI

Immune effectors ( E
0): Ė = λE +

bE(T∗

1
+T

∗

2
)

(T∗

1
+T∗

2
)+Kb

E −
dE(T∗

1
+T

∗

2
)

(T∗

1
+T∗

2
)+Kd

E − δEE

λ2 1.0099e-01 δ 1.8651e-01 T 0
2 1.7545e+01

d2 2.2109e-02 m1 2.4385e-02 T ∗0
2 6.0955e-01

f 5.3915e-01 m2 1.3099e-02 V 0
NI

4.9909e+03

k2 5.5290e-04 bE 1.6136e-01 E0 1.8834e-01
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Model Fit: Two Early Interruptions
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• Good agreement between half and full data set calibrations, and to data

• Reasonable prediction of long-term off treatment period

• Capture viral peaks? Capture T-cell trend? (T-cell data very noisy)
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Model Fit: Two Early Interruptions
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• Better fit to viral peaks

• Reasonable steady state prediction (within 1 log)

• T-cell fit may be improved by (variance) weighted least squares
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Poor Model Fit: Two Early Interruptions
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• Despite fitting early viral peaks, do not predict steady state well

• Even full data may be challenging to fit (local minimum?)
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Model Fit: One Early Interruption
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• Single interruption can yield reasonable viral load predictions

• Suggests need for better T-cell dynamics model (note low T-cell count), though

some T-cell transients are modeled.
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Model Fit: No Early Interruptions
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• With no early interruption, it is difficult (impossible?) to predict later interruption.

• Noticable difference between fits with half and full datasets

(e.g., NT =1.829e+01 vs. 3.677e+01)
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Conclusions and Research Needs

• HIV model with immune response can predict small viral loads during

suppression and viral rebound during treatment interruption

• Censored data algorithm offers a means to quantify uncertainty when

measurements are below assay limits

• Calibrated model capable of predicting long-term patient behavior; need

means to quantify success of prediction (LSQ error? early peak fit?

steady state?)

• Need better quantification of T-cell measurement error and modeling

transients (moving average?)

• Relevant immune responses need to be quantitatively characterized and

modeled (in progress at NCSU)
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Thank You!

Brian M. Adams

briadam@sandia.gov

(optimization, uncertainty quantification, MEMS design, epidemic modeling)
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